Extended Laplace Power Series Method for Solving Nonlinear Caputo Fractional Volterra Integro-Differential Equations
نویسندگان
چکیده
In this paper, we compile the fractional power series method and Laplace transform to design a new algorithm for solving Volterra integro-differential equation. For that, assume (LPS) solution in terms of q=1m,m∈Z+, where derivative order α=qγ, which γ∈Z+. This assumption will help us write integral, kernel, nonhomogeneous as LPS with same power. The recurrence relations finding coefficients can be constructed using form. To demonstrate algorithm’s accuracy, residual error is defined calculated several values derivative. Two strongly nonlinear examples are discussed provide efficiency algorithm. gains powerful results kind problem. Under Caputo meaning symmetry order, obtained illustrated numerically graphically. Geometrically, behavior solutions declares that changing parameter their domain alters style these symmetric meaning, well indicates harmony symmetry, leads them fully coincide at value ordinary From simulations, report recommended novel straightforward, accurate, superb tool generate analytic-approximate integral equations order.
منابع مشابه
The combined reproducing kernel method and Taylor series for solving nonlinear Volterra-Fredholm integro-differential equations
In this letter, the numerical scheme of nonlinear Volterra-Fredholm integro-differential equations is proposed in a reproducing kernel Hilbert space (RKHS). The method is constructed based on the reproducing kernel properties in which the initial condition of the problem is satised. The nonlinear terms are replaced by its Taylor series. In this technique, the nonlinear Volterra-Fredholm integro...
متن کاملModified Laplace decomposition method for fractional Volterra-Fredholm integro-differential equations
This paper successfully applies the Adomian decomposition and the modified Laplace Adomian decomposition methods to find the approximate solution of a nonlinear fractional Volterra-Fredholm integro-differential equation. The reliability of the methods and reduction in the size of the computational work give these methods a wider applicability. Also, the behavior of the solution can be formall...
متن کاملA Numerical Scheme for Solving Nonlinear Fractional Volterra Integro-Differential Equations
In this paper, a Bernoulli pseudo-spectral method for solving nonlinear fractional Volterra integro-differential equations is considered. First existence of a unique solution for the problem under study is proved. Then the Caputo fractional derivative and Riemman-Liouville fractional integral properties are employed to derive the new approximate formula for unknown function of the problem....
متن کاملthe combined reproducing kernel method and taylor series for solving nonlinear volterra-fredholm integro-differential equations
in this letter, the numerical scheme of nonlinear volterra-fredholm integro-differential equations is proposed in a reproducing kernel hilbert space (rkhs). the method is constructed based on the reproducing kernel properties in which the initial condition of the problem is satised. the nonlinear terms are replaced by its taylor series. in this technique, the nonlinear volterra-fredholm integr...
متن کاملYang-Laplace transform method Volterra and Abel's integro-differential equations of fractional order
This study outlines the local fractional integro-differential equations carried out by the local fractional calculus. The analytical solutions within local fractional Volterra and Abel’s integral equations via the Yang-Laplace transform are discussed. Some illustrative examples will be discussed. The obtained results show the simplicity and efficiency of the present technique with application t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2023
ISSN: ['0865-4824', '2226-1877']
DOI: https://doi.org/10.3390/sym15071296